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Weibull master curves and fracture

toughness testing

Part II Evaluation of data of quasi-static three-point bend
tests of tetragonal zirconia, zirconia/alumina and silicon nitride

M. LAMBRIGGER
Centre de recherches en physique des plasmas, Technologie de la Fusion, EPFL,
Im Struppen 12, CH-8048 Zürich, Switzerland

It has already been displayed that a variety of apparent fracture toughness master curves
and Weibull master curves exist, which enables an extensive description of the fracture
toughness of the investigated solids. Therefore, the concept of Weibull master curves has
been generalized. In this paper, it is shown that characteristic magnitudes, derived from
both experimental Weibull master curves and experimental apparent fracture toughness
master curves, can be defined in a new way, by quantifying the amount of microcracking
and crack-tip shielding that occurs when materials undergo stable crack growth prior to
failure (when a sufficient external load is applied). Experimental data of three-point bend
tests of ceria partially stabilized tetragonal zirconia, yttria partially stabilized
zirconia/β-alumina-composite, and coarse-grained β-silicon nitride gathered at room
temperature have been evaluated. The Weibull master curves, which are obtained by
scaling the cumulative failure distribution functions with the corresponding mean-values,
have been found to be most appropriate for investigating the fracture toughness by
quasistatic uniaxial tensile or bend tests. C© 1999 Kluwer Academic Publishers

List of Symbols

c Constant
σ Applied failure stress
P(σ ) Three-parameter, cumulative Weibull

failure probability distribution function
σ0 Normalizing factor in dimensions of stress
στ Threshold stress, below which no

failure occurs
σin Failure stress at the inflexion pointP(σ )
σ̄ Mean failure stress
m Weibull modulus
z Distinct value of the cumulative failure

probability distribution function
σz Failure stress corresponding to the

cumulative failure probabilityz
KI Failure stress intensity
P(KI ) Cumulative failure probability distribution

function in terms ofKI

Kmin Threshold stress intensity, below
which no failure occurs

KIin Failure stress intensity at the
inflexion point ofP(KI )

KI Mean failure stress intensity
KI z Failure stress intensity corresponding

to the cumulative failure probabilityz
I (x, m), K (y, m) andM [e(z), m]:
Three different types of Weibull master curves

I exp(x, m), Kexp(y, m) andMexp[e(z), m]:
Three different types of experimental Weibull master
curves

N(a), T(b) andL[d(z)]:
Three different types of master curves for brittle cleav-
age fracture toughness testing, i.e., three different
types of theoretical, apparent fracture toughness master
curves

Nexp(a), Texp(b) andLexp[d(z)]:
Three different types of experimental, apparent fracture
toughness master curves

x, y ande(z):
Different types of scaled failure stresses

a, b andd(z):
Different types of scaled failure stress intensities

xcr , ycr , ecr (z), acr , bcr anddcr (z):
Values of the cross-over points formed by the corre-
sponding experimental and theoretical master curves

H (x):
Step function being equal to zero forx < 1 and equal
to one forx ≥ 1
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Fih1, Fih2, Fexp1,Fexp2 andχ :
Former deviation parameters derived from the Weibull
master curvesI (x, m) and I exp(x, m) as well as the
step functionH (x)

H [e(z)]:
Step function being equal to zero fore(z) < ecr (z) and
equal to one fore(z) ≥ ecr (z)

Fi M 1[e(z)], Fi M 2[e(z)], Fexp1M [e(z)], Fexp2M
[e(z)], χM , χI andχk:
New deviation parameters derived from the Weibull
master curvesM [e(z)] and Mexp[e(z)] as well as the
step functionH [e(z)]

C1∞, C2∞, C1exp,C2exp andχB:
Deviation parameters derived from master curves for
brittle cleavage fracture toughness testingL[d(z)]
and experimental, apparent fracture toughness master
curvesLexp[d(z)]

1. Introduction
In part 1 of this series of papers [1], the derivation
and construction of all types of Weibull master curves
I (x, m), K (y, m) andM [e(z), m] have been described,
as well as theoretical, apparent fracture toughness mas-
ter curvesN(a), T(b) andL[d(z)]. Moreover, the con-
struction of experimental master curves has been shown
in detail. Finally, the mathematical link between the
quasi-static Weibull theory for uniaxial tensile and
bend tests and the quasi-static Wallin theory for brit-
tle cleavage fracture toughness testing has also been
revealed.

In this paper, deviation parameters will be defined
for experimental Weibull master curves and apparent
fracture toughness master curves, which quantify the
capacity of the investigated materials to undergo stable
crack growth prior to failure. These deviation param-
eters will subsequently be determined and discussed
for ceria partially stabilized tetragonal zirconia, yttria
partially stabilized zirconia/β-alumina-composite, and
coarse-grainedβ-silicon nitride by evaluating experi-
mental data of quasi-static three-point bend tests per-
formed at room temperature.

Lambrigger [2] has already shown that experimen-
tal Weibull master curves of materials undergoing an
amount of stable crack growth prior to failure enable
the characterization of the toughening mechanisms op-
erating in the investigated materials. Furthermore, it has
been shown that an experimental Weibull master curve
I exp(x, m) of 8 wt % Y-PSZ/20 vol %β-alumina com-
posites can be constructed in the case of materials un-
dergoing stable crack growth prior to failure by simply
calculating the Weibull modulusm from the upper fail-
ure stress rangeσi of experimental, cumulative failure
stress probability distributionP(σi ) having been treated
extensively in part 1 of this series of papers [1]. In order
to evaluate experimental failure data (σi , P(σi )), a step
function H (x) equal to zero for scaled failure stresses
x < 1 and equal to one forx ≥ 1, as well as a quotientχ
characteristic for the investigated material, have been
defined by Lambrigger [2].H (x) represents a material

undergoing 0% unstable crack extension.χ has thus
been given by

χ =
(

Fih1

Fih2

)
:

(
Fexp1

Fexp2

)
(1)

whereFih1 andFih2 denote the two areas formed be-
tweenH (x) andI (x, m) in the range 0≤ x ≤ 1. Fexp1
andFexp2, however, represent the two areas formed be-
tweenI exp(x, m) andI (x, m) in the samex-range. The
areasFih1 andFexp1 have been defined as being lo-
cated below the cross-overxcr of the respective border-
ing curves, whereasFih2 andFexp2 are located above
xcr . The quotientχ was assumed, in a first approach,
as a specimen-size-independent, material-specific mag-
nitude characterizing the toughening mechanisms op-
erating in the investigated materials. Unfortunately,χ

is a function of the material-specific Weibull modu-
lus m [2], thus complicating quantitative comparisons
between different types of materials, if the shapes of
Fexp1 andFexp2 also vary. Moreover, the crossover
point has not been taken into account in the definitions
of Fih1 andFih2, thus risking a strongχ -dependence
on shapes andx-positions ofFexp1 andFexp2.

2. Significant deviation parameters derived
from Weibull master curves

A highly appropriate evaluation method, which con-
siders variations in shape and position of the devia-
tion areas, will be presented in this section. It can be
applied to all three types of Weibull master curves,
i.e., I (x, m), K (y, m), and M [e(z), m] as defined in
part 1 [1]. It will be developed forM [e(z), m], as be-
ing the general type of master curve containingI (x, m)
andK (y, m) as special cases. First, another step func-
tion H [e(z)] equal to zero for scaled failure stresses
e(z) < ecr (z) and equal to one fore(z) ≥ ecr (z), is de-
fined.ecr (z) represents the value corresponding to the
cross-over point formed byM [e(z), m] and the ex-
perimental Weibull master curveMexp[e(z), m]. The
step functionH [e(z)] represent materials, which fail
at e(z) = ecr (z) in a deterministic way, i.e., the frac-
ture processes leading to failure are fully controlled
by the toughening mechanisms responsible for stable
crack growth. Thus, the scaled failure stress distribu-
tions of such materials are independent of the initial
defect-size distributions [2, 3, 9]. The two areas formed
between the step functionH [e(z)] and M [e(z), m] are
denoted byFi M 1[e(z)] and Fi M 2[e(z)]. In addition,
I (x, m) is equivalent toM [e(zin), m], wherebyzin is
defined by

zin = P(σin) = 1 − exp

(
1 − m

m

)
(2)

σ (zin) = σin (3)

e(zin) = σ − στ

σin − στ

= x (4)

Furthermore,K (y, m) is equivalent toM [e(z̄), m] rep-
resenting the other special case ofM [e(z), m], which
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fulfills the conditionFi M 1[e(z)] − Fi M 2[e(z)] = 0,
if ecr (z) is equal to one.̄z is defined as follows:

z̄ = P(σ̄ ) = 1 − exp

{
−

[
0

(
1 + 1

m

)]m
}

(5)

σ̄ = σ (z̄) =
∫ 1

0
σ d P = στ + σ00

(
1 + 1

m

)
(6)

e(z̄) = σ − στ

σ̄ − στ

= y (7)

Fexp1M [e(z)] and Fexp2M [e(z)] represent the two
areas formed betweenMexp[e(z), m] and M [e(z), m],
wherebyMexp[e(z), m] is constructed by calculating
the Weibull modulusm from the upperσ -range of ex-
perimental, cumulative failure stress probability distri-
bution P(σi ). The following equations result from the
application of the evaluation method developed in ref-
erence [2]:

Fi M 1[e(z)] =
∫ ecr (z)

0
M [e(z), m] d[e(z)]

=
∫ ecr (z)

0

{
1−(1 − z)[e(z)]m}

d[e(z)] (8)

Fi M 2[e(z)] =
∫ ∞

ecr (z)
{1 − M [e(z), m]} d[e(z)]

=
∫ ∞

ecr (z)

{
(1 − z)[e(z)]m}

d[e(z)] (9)

Fexp1M [e(z)] =
∫ ecr (z)

0
|Mexp[e(z), m]

− M[e(z), m]| d[e(z)] (10)

Fexp2M [e(z)] =
∫ ∞

ecr (z)
|M [e(z), m]

− Mexp[e(z), m]| d[e(z)] (11)

BetweenFi M 1[e(z)] and Fi M 2[e(z)] the following
relation is valid:

Fi M 1[e(z)] − Fi M 2[e(z)]

= ecr (z) −
∫ ∞

0
exp{[ln(1 − z)][e(z)]m} d[e(z)]

= ecr (z) −
0

(
1 + 1

m

)
[−ln(1 − z)]

1
m

(12)

whereby Equations 8 and 9 as well as the following
identities are used:

(1 − z)[e(z)]m = exp
{
ln

[
(1 − z)[e(z)]m]}

= exp{[e(z)]mln(1 − z)} (13)

The specimen-size-independent, material-specific quo-
tientχM is then given by

χM =
{

Fi M 1[e(z)]

Fi M 2[e(z)]

}
:

{
Fexp1M [e(z)]

Fexp2M [e(z)]

}
(14)

The χM -values of the special master curvesI (x, m)
and K (y, m), denoted byχI andχk, are obtained by
replacingz with zin or z̄ in equations (8–14):

χI =
{

Fi M 1[e(zin)]

Fi M 2[e(zin)]

}
:

{
Fexp1M [e(zin)]

Fexp2M [e(zin)]

}
(15)

χk =
{

Fi M 1[e(z̄)]

Fi M 2[e(z̄)]

}
:

{
Fexp1M [e(z̄)]

Fexp2M [e(z̄)]

}
(16)

The quotientsχM , χI , andχk are material-specific in
a first approach, as has already been shown forχ by
Lambrigger [2]. However, all these quotients remain
m-dependent, thus complicating comparisons between
materials with highly different Weibull modulim. At
least calibration has been made easier because shapes
and positions of the areasFexp1M andFexp2M , being
separated by the cross-over point, are considered by
integration up toecr (z) in all the relevant equations
(8–11). The latter is not the case for the quotientχ

defined by Equation 1 and as suggested in an earlier
paper [2].

3. Significant deviation parameters derived
from apparent fracture toughness master
curves

The theoretical, apparent fracture toughness master
curvesL[d(z)] have already been discussed in detail in
part 1 [1]. However, an additional step function through
the inflexion point ofL[d(z)], which is equal to zero
for the scaled failure stress intensitiesd(z) < dcr (z) and
equal to one ford(z) ≥ dcr (z), can be defined represent-
ing formally a material undergoing 0% unstable crack
extension. Furthermore,dcr (z) represents the value of
the cross-over point formed byL[d(z)] andLexp[d(z)].
Between this step function andL[d(x)], two areas are
formed,C1∞ below andC2∞ above the cross-over of the
two curves atd(z) = 1. The values ofC1∞ andC2∞ thus
correspond to 0% unstable crack extension. The values
of the areas formed betweenL[d(z)] and Lexp[d(z)]
generally represent fracture events with a limited per-
centage of stable crack extension. They are denoted by
C1exp andC2exp, if two such areas are formed.C1exp
represents in these cases the area below, andC2exp rep-
resents the area above the cross-overdcr (z) formed by
Lexp[d(z)] andL[d(z)]. C1∞, C1exp,C2∞, andC2exp
are calculated as follows:

C1∞ =
∫ dcr (z)

0
L[d(z)] d[d(z)]

=
∫ ecr (z)

0

(
1 − exp

{
[−ln(1 − z)]

m−4
4

× [−ln(1 − M [e(z), m])]
4
m

})
d[e(z)] (17)

C2∞ =
∫ ∞

dcr (z)
{1 − L[d(z)]} d[d(z)]

=
∫ ∞

ecr (z)

(
exp

{
[−ln(1 − z)]

m−4
4

× [−ln(1 − M [e(z), m])]
4
m

})
d[e(z)] (18)
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|C1∞ − C1exp| =
∫ dcr (z)

0
Lexp[d(z)] d[d(z)]

=
∫ ecr (z)

0

(
1 − exp

{
[−ln(1 − z)]

m−4
4

× [−ln(1 − Mexp[e(z), m])]
4
m

})
× d[e(z)] (19)

|C2∞ − C2exp| =
∫ ∞

dcr (z)
{1 − Lexp[d(z)]} d[d(z)]

=
∫ ∞

ecr (z)

(
exp

{
[−ln(1 − z)]

m−4
4

× [−ln(1 − Mexp[e(z), m])]
4
m

})
× d[e(z)] (20)

The corresponding expressions for the special master
curvesI (x, m) or K (y, m) are obtained, by replacing
L[d(z)] throughN(a) = L[d(zin)] or T(b) = L[d(z̄)],
as well asM [e(z), m] through I (x, m) = M [e(zin), m]
or K (y, m) = M [e(z̄), m] in Equations 17 and 18.
Moreover, the analogous replacements have to be
carried out with the experimental master curves
Lexp[d(z)] andMexp[e(z), m] in Equations 19 and 20.
As in the case of Weibull master curves, a material-
specific quotientχB can also be defined for appar-
ent fracture toughness master curves in the following
manner:

χB =
(

C1∞
C2∞

)
:

(
C1exp

C2exp

)
(21)

The deviation parameters derived from apparent frac-
ture toughness master curves arem-independent, fascil-
itating direct comparisons of completely different types
of materials. They can be interpreted with the help of
the two component models of Cook and Clarke [3].
This interpretation is also possible for the deviation
parameters derived from Weibull master curves, how-
ever, calibration problems can arise.

4. Model of Cook and Clarke
The areasC1exp andC2exp can be interpreted with the
help of the two-component model described by Cook
and Clarke [3]. Cook and Clarke modelled the driv-
ing force for fracture as the sum of two components,
one stabilizing and the other destabilizing crack prop-
agation, leading to a crack extension force displaying
a minimum as a function of crack length. The resis-
tance to crack extension, the R-curve, is described in
this two-component model by an increasing power law
R ∝ c2τ (c being the crack length,R the fracture resis-
tance, andτ the toughening exponent, characterizing
the rate of toughness increase) overlapped by an addi-
tional, localized loading, decreasing the driving force
for fracture with increasing crack length. The localized
loading is modelled by a residual stress intensity factor.
Using equilibrium fracture criteria, it is thus possible

to describe the fracture behavior of brittle materials,
which undergo an amount of stable crack growth be-
fore failure occurs by unstable crack extension. If the
two-component model of Cook and Clarke is used to in-
terprete the areasC1exp andC2exp, it can be observed
that, within the framework of this approach, values,
shapes, and positions ofC1exp andC2exp are only de-
pendent on the toughening exponentτ describing the
rising R-curve behavior, and on the type, localization,
and number of residual stress fields existing in the inves-
tigated specimens. Because the toughening exponentτ

is generally valid in the whole specimen, it is a charac-
teristic value of the material. The localized component
of the stress intensity factor is attributed to defects pro-
ducing the residual stress fields in the specimen. It is
supposed that the residual stress fields mainly deter-
mine the shape, value, and position relative to thed(z)-
axis ofC2exp (i.e., also thedcr (z)-value), the toughen-
ing exponent,τ , however, predominantly the value of
C1exp. The type, degree of localization, and number
of residual stress fields in the material and, therefore,
dcr (z) andC2exp, are thus believed to determine, in a
first approach, the toughening behavior of brittle ma-
terials with respect to the stable growth of microracks,
if an external load is applied; for the growth of mi-
crocracks is controlled by microstructural features, and
finally results in local stress release. The toughening
exponent,τ , on the other hand, is thought to determine
predominantly the toughening behavior based on the
increased fracture resistance in the lowerd(z)-range
of large cracks, mainly due to crack-tip shielding. The
crack growth of large cracks is principally controlled
by the continuum properties of the material.

Because in quasi-static uniaxial bend tests, a com-
pression region is formed in the tested specimens,
which is the sum of localized residual stress fields de-
creasing the driving force for fraction, it is thought
that experimental, apparent fracture toughness master
curvesLexp[d(z)], obtained from quasi-static uniaxial
bend tests, might slightly differ from those of uniax-
ial tensile tests, if very large stable crack growth of
relatively small cracks takes place prior to failure. In
uniaxial tensile tests, no additional residual stress fields
of this type, decreasing the driving force for fraction,
are created. Therefore, theC1exp- and specially the
C2exp-values obtained from uniaxial bend tests might
be overestimated in these cases. The values ofC1exp
andC2exp might also turn out to be slightly specimen-
size-dependent in uniaxial tensile tests if the residual
stresses built up in the tested specimens are both ex-
tremely high and clearly not proportional to the applied
stress, because in these cases, the Weibull modulusm is
not necessarily specimen-size-independent, according
to Weibull [4, 5].

5. Experimental data of three-point
bend tests

The experimental Weibull master curveKexp(y,
m= 7.9) and the corresponding experimental, apparent
fracture toughness master curveTexp(b) of 12 mol %
ceria partially stabilized tetragonal zirconia polycrys-
tals (Ce-TZP) are displayed in Figs 1 and 2. These
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Figure 1 Dashed line: Experimental, alternative Weibull master curve
Kexp(y, m= 7.9) of Ce-TZP calculated from three-point bend tests of
Ready and McCallen [6]. Full line: Alternative Weibull master curve
K (y, m= 7.9).

Figure 2 Dashed line: Experimental, alternative apparent fracture
toughness master curveTexp(b) of Ce-TZP calculated from
Kexp(y, m= 7.9). Full line: Alternative master curve for brittle cleavage
fracture toughness testingT(b).

master curves have been derived from quasi-static
three-point bend tests of Ready and McCallen [6]
performed at room temperature. The master curves
K (y, m) andT(b) are most convenient for describing
quasi-static, mechanical tests characterized by uniax-
ial stress distributions because the mean, represent-
ing the physically highly significant first moment, is
used as scaling factor and, moreover,K (y, m) exists
for every relevant Weibull modulusm> 0. The fol-
lowing characteristic deviation parameters have been
evaluated for Ce-TZP:m≈ 7.9, ycr ≈ 1.03,bcr ≈ 1.03,
χk ≈ 0.22, χB ≈ 0.18, (χk/χB) ≈ 1.26, Fi M 1[e(z̄)] ≈
0.075, Fi M 2[e(z̄)] ≈ 0.098, Fexp1M [e(z̄)] ≈ 0.062,
Fexp2M [e(z̄)] ≈ 0.018, C1∞ ≈ 0.1285, C2∞ ≈
0.0985, (C1exp/C1∞) ≈ 69%, and (C2exp/C2∞) ≈
12%.

The experimental Weibull master curveKexp(y,
m= 7.0) and the experimental, apparent fracture tough-
ness master curveTexp(b) of 8 wt % yttria partially
stabilized zirconia/20 vol %β-alumina composite (Y-
PSZ/β-alumina composite) are displayed in Figs 3 and
4. These master curves have been derived from quasi-
static three-point bend tests performed at room temper-
ature by Troczynski and Nicholson [7]. The following
characteristic deviation parameters have been evaluated

Figure 3 Dashed line: Experimental, alternative Weibull master curve
Kexp(y, m= 7.0) of Y-PSZ/β-alumina composite calculated from three-
point bend tests of Troczynski and Nicholson [7]. Full line: Alternative
Weibull master curveK (y, m= 7.0).

Figure 4 Dashed line: Experimental, alternative apparent fracture
toughness master curveTexp(b) of Y-PSZ/β-alumina composite cal-
culated fromKexp(y, m= 7.0). Full line: Alternative master curve for
brittle cleavage fracture toughness testing T(b).

for Y-PSZ/β-alumina composite:m ≈ 7.0, ycr ≈ 0.83,
bcr ≈ 0.82, χk ≈ 0.40, χB ≈ 0.24, (χk/χB) ≈
1.67, Fi M 1[e(z̄)] ≈ 0.017, Fi M 2[e(z̄)] ≈ 0.187,
Fexp1M [e(z̄)] ≈ 0.014, Fexp2M [e(z̄)] ≈ 0.062,
C1∞ ≈ 0.0461,C2∞ ≈ 0.2260, (C1exp/C1∞) ≈ 82%
and (C2exp/C2∞) ≈ 19%. It is obvious, that the
Weibull moduli m of Ce-TZP and Y-PSZ/β-alumina
differ only slightly. However, the shapes and positions
of the deviation areasFexp1M [e(z̄)], Fexp2M [e(z̄)],
C1exp andC2exp are completely different. The latter
leads to quite different cross-over valuesycr andbcr ,
characterizing in a first approach shapes and positions
of the deviation areas. Furthermore, the (χk/χB)-values
of the two materials are close to one another. Therefore,
becauseχB is anm-independent magnitude, it can be
concluded also that deviation parameters of Weibull
master curves of different types of materials might be
compared to one another, as long as the values of the
Weibull moduli m do not differ significantly. Further,
the deviation areas have to be defined in the suggested
way by taking account of the cross-over values in the
form of integration limits.

The experimental Weibull master curveKexp(y,
m= 25) andTexp(b) of a coarse-grainedβ-silicon ni-
tride are displayed in Figs 5 and 6. These master curves
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Figure 5 Dashed line: Experimental, alternative Weibull master curve
Kexp(y, m= 25) of coarse-grainedβ-silicon nitride calculated from
three-point bend tests of Hirosaki and Akimune [8]. Full line: Alter-
native Weibull master curveK (y, m= 25).

Figure 6 Dashed line: Experimental, alternative apparent fracture
toughness master curveTexp(b) of coarse-grainedβ-silicon nitride cal-
culated fromKexp(y, m= 25). Full line: Alternative master curve for
brittle cleavage fracture toughness testingT(b).

are again derived from quasi-static three-point bend
tests being performed at room-temperature by Hirosaki
and Akimune [8]. It can be seen from Fig. 6 thatC1exp
cannot be evaluated graphically fromTexp(b) for
statistical reasons. According to Equation 24 of part
1 [1], it can be seen that the high value of the Weibull
modulusm reducesTexp(b) to a very narrowb-range
close to 1 for measurements based on about twenty
tested specimens. Nevertheless,Kexp(y, m= 25) fa-
cilitates an acceptable fit down toy = 0. Thus, at least
Fexp1M [e(z̄)] can be evaluated directly. Morevoer,
C1exp can be obtained analytically by simply using
Equation 19 in the special case ofKexp(y, m).

|C1∞ − C1exp| =
∫ bcr

0
Texp(b) db

=
∫ ycr

0

(
1 − exp

{
−0

(
1 + 1

4

)4

×
{

−0

(
1 + 1

m

)−m

× ln[1 − Kexp(y, m)]

} 4
m
})

dy

(22)

The following characteristic deviation parameters have
thus been evaluated for coarse-grainedβ-silicon ni-
tride: m ≈ 25.0, ycr ≈ 0.98, bcr ≈ 0.98, χk ≈
0.32, χB ≈ 0.08, (χk/χB) ≈ 3.8, Fi M 1[e(z̄)] ≈
0.012, Fi M 2[e(z̄)] ≈ 0.032, Fexp1M [e(z̄)] ≈ 0.005,
Fexp2M [e(z̄)] ≈ 0.004, C1∞ ≈ 0.1036, C2∞ ≈
0.1236, (C1exp/C1∞) ≈ 24%, and (C2exp/C2∞) ≈
2%. Although shapes and positions of the areas de-
scribed by the deviation magnitudesFexp1M [e(z̄)],
Fexp2M [e(z̄)], C1exp,C2exp, ycr and bcr are quite
similar to the ones evaluated for Ce-TZP, a clearly dif-
fernt quotient (χk/χB) has been discovered for the two
materials. Therefore (χk/χB) is a considerably vary-
ing function with respect to the Weibull modulusm.
Consequently, if it is intended to compare directly the
deviation magnitudes of Weibull master curves of ma-
terials with completely differentm-values, a calibration
function χk

χB
(m) has to be available.

6. Discussion
In agreement with the model of Cook and Clarke [3], a
high (C1exp/C1∞)-value can be explained as an effi-
cient shielding of the crack-tips of large cracks. This is
clearly the case for Ce-TZP and Y-PSZ/β-alumina com-
posite. On the other side, a high (C2exp/C2∞)-value
combined withdcr (z) ≈ 1 indicates a huge amount of
simultaneous, stable growth of microcracks as well
as a narrow initial defect-size distribution. If the ini-
tial defect-size distribution had not been narrow,dcr (z)
would have been decreased clearly below 1 by the grow-
ing defects belonging to the large-size tail of the initial
defect-size distribution. For Ce-TZP, all of the men-
tioned conditions are fulfilled, whereas forβ-silicon
nitride only a narrow initial defect-size distribution as
well as a moderate shielding of large cracks might be
supposed. Furthermore, the initial defects represent the
potential starting points for microcracking (i.e., the nu-
cleation sites of the microcracks).

In the case of Y-PSZ/β-alumina composite, quite
high (C1exp/C1∞)- and (C2exp/C2∞)-values have
been evaluated indicating efficient shielding of crack-
tips of large cracks as well as intense stable microc-
racking. However,dcr (z) is clearly smaller than 1, thus
giving rise to the assumption of a wide initial defect-
size distribution as well as simultaneous, intense stable
growth of microcracks of a wide size-range prior to fail-
ure. This situation can characteristically be expected, if
debonding occurs along inhomogenities, such as grain-
boundaries and internal interfaces, and is characterized
by local, detrimental defect-size distributions as well as
high, local concentrations of defects. For example, in
the case of the Y-PSZ/β-alumina composite, significant
debonding along the interfaces of the two phases has
been claimed [9].

It is assumed that the positions ofC1exp andC2exp
relative to thed(z)-axis, as well as the values and
shapes of these two areas, might provide additional in-
formation about the toughening mechanisms operating
in macroscopically homogeneous materials undergo-
ing stable crack growth, if experimental data of mate-
rials of known toughening mechanisms are available
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as calibration curves. In addition, typical toughening
mechanisms are crack-branching, crack-deflection, sta-
ble growth of microcraks, network-formation of micro-
cracks, and ductile tearing. (Also, combinations of sev-
eral mechanisms might not be rare.) The toughening
mechanisms are mainly relevant in crack-tip shielding
of larger cracks, stable growth of (micro-) cracks as
well as (micro-) crack nucleation from initial defects.

Furthermore, the whole discussion could also have
been performed merely on the basis of Weibull master
curvesM [e(z), m] and on the corresponding deviation
parametersχM , ecr (z), Fexp1M and Fexp2M ; how-
ever, direct interpretation would be nearly impossible,
as long as calibration curves are not available, and as
long as it is not clear up to what degreeχM is shape-
andecr (z)-independent.
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