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Weibull master curves and fracture

toughness testing

Part Il Evaluation of data of quasi-static three-point bend

tests of tetragonal zirconia, zirconia/alumina and silicon nitride

M. LAMBRIGGER

Centre de recherches en physique des plasmas, Technologie de la Fusion, EPFL,

Im Struppen 12, CH-8048 Ziirich, Switzerland

It has already been displayed that a variety of apparent fracture toughness master curves
and Weibull master curves exist, which enables an extensive description of the fracture
toughness of the investigated solids. Therefore, the concept of Weibull master curves has
been generalized. In this paper, it is shown that characteristic magnitudes, derived from
both experimental Weibull master curves and experimental apparent fracture toughness
master curves, can be defined in a new way, by quantifying the amount of microcracking
and crack-tip shielding that occurs when materials undergo stable crack growth prior to
failure (when a sufficient external load is applied). Experimental data of three-point bend
tests of ceria partially stabilized tetragonal zirconia, yttria partially stabilized
zirconia/B-alumina-composite, and coarse-grained S-silicon nitride gathered at room
temperature have been evaluated. The Weibull master curves, which are obtained by
scaling the cumulative failure distribution functions with the corresponding mean-values,
have been found to be most appropriate for investigating the fracture toughness by
quasistatic uniaxial tensile or bend tests. © 1999 Kluwer Academic Publishers

List of Symbols
c Constant
o Applied failure stress

P(c) Three-parameter, cumulative Weibull
failure probability distribution function
00 Normalizing factor in dimensions of stress
Threshold stress, below which no
failure occurs
n Failure stress at the inflexion poiR{(c)
Mean failure stress
Weibull modulus
Distinct value of the cumulative failure
probability distribution function
07 Failure stress corresponding to the
cumulative failure probability
K, Failure stress intensity
P(K;) Cumulative failure probability distribution
function in terms ofK
Kmin  Threshold stress intensity, below
which no failure occurs
Kiin  Failure stress intensity at the
inflexion point of P(K)
Ky Mean failure stress intensity
Kiz Failure stress intensity corresponding
to the cumulative failure probability
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Three different types of Weibull master curves
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I exp, m), Kexp(y, m) andMexple(z), m]:
Three different types of experimental Weibull master
curves

N(a), T(b) andL[d(2)]:

Three different types of master curves for brittle cleav-
age fracture toughness testing, i.e., three different
types of theoretical, apparent fracture toughness master
curves

Nexp@), Texpb) andLexp[d(2)]:
Three different types of experimental, apparent fracture
toughness master curves

X, y ande(2):
Different types of scaled failure stresses

a, b andd(z):
Different types of scaled failure stress intensities

Xer» Yers €r(2), @cr, ber @andder (2):
Values of the cross-over points formed by the corre-
sponding experimental and theoretical master curves

H (x):

Step function being equal to zero far< 1 and equal
to one forx > 1
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Fihl, Fih2, Fexpl,Fexp2 andy: undergoing 0% unstable crack extensignhas thus
Former deviation parameters derived from the Weibullbeen given by
master curves (x, m) and | exp(x, m) as well as the

step functionH (x) _ (Fihl\ (Fexpl )
x= <Fih2> ' (Fexp2>

He()]:

Step function being equal to zero fefz) < e (z2) and  whereFih1 andFih2 denote the two areas formed be-

equal to one for(z) > e (2) tweenH (x) andl (x, m) in the range &< x < 1. Fexpl

andFexp2, however, represent the two areas formed be-
FiM1[e(z)], FiM2[e(z)], FexpIM[e(z)], Fexp2M  tweenl exp(x, m)andl (X, m) in the same&-range. The
[e(D)], xm, x1 andxk: areasFih1l andFexpl have been defined as being lo-
New deviation parameters derived from the Weibullcated below the cross-ovey; of the respective border-
master curveM[e(z)] and Mexple(z)] as well as the ing curves, whereasih2 andFexp2 are located above

step functionH [e(2)] Xcer. The quotienty was assumed, in a first approach,
as aspecimen-size-independent, material-specific mag-
C100: Coso, Clexp,C2exp andys: nitude characterizing the toughening mechanisms op-

Deviation parameters derived from master curves foerating in the investigated materials. Unfortunatgly,
brittle cleavage fracture toughness testih§d(z)] is a function of the material-specific Weibull modu-
and experimental, apparent fracture toughness masters m [2], thus complicating quantitative comparisons
curvesLexpld(2)] between different types of materials, if the shapes of
Fexpl andFexp2 also vary. Moreover, the crossover
. point has not been taken into account in the definitions
1. Introduction of Fih1 andFih2, thus risking a strong-dependence

In part 1 of this series of papers [1], the derivation on shapes ank-positions ofF exp1 andFexp2.
and construction of all types of Weibull master curves

I (x, m), K(y, m) andM[e(z), m] have been described,
as well as theoretical, apparent fracture toughness mas-
ter curvesN (a), T(b) andL[d(Z)] Moreover, the con- 2. Significant deviation parameters derived
struction of experimental master curves has been shown from Weibull ‘master curves _
in detail. Finally, the mathematical link between the A highly appropriate evaluation method, which con-
quasi-static Weibull theory for uniaxial tensile and Siders variations in shape and position of the devia-
bend tests and the quasi-static Wallin theory for brit-tion areas, will be presented in this section. It can be
tle cleavage fracture toughness testing has also beapplied to all three types of Weibull master curves,
revealed. i.e., I (x, m), K(y, m), and M[e(z), m] as defined in
In this paper, deviation parameters will be definedPart 1 [1]. It will be developed foM[e(z), m], as be-
for experimental Weibull master curves and apparentnd the general type of master curve containig, m)
fracture toughness master curves, which quantify th@ndK(y, m) as special cases. First, another step func-
capacity of the investigated materials to undergo stabléon H[e(z2)] equal to zero for scaled failure stresses
crack growth prior to failure. These deviation param-€(2) < &:(2) and equal to one foe(z) > e (2), is de-
eters will subsequently be determined and discussetined. & () represents the value corresponding to the
for ceria partially stabilized tetragonal zirconia, yttria Cross-over point formed by[e(z). m] and the ex-
partially stabilized zirconigd-alumina-composite, and Perimental Weibull master curvélexple(z), m]. The
coarse-graineg-silicon nitride by evaluating experi- Step functionH[e(z)] represent materials, which fail
mental data of quasi-static three-point bend tests pet &2) =€ (2) in a deterministic way, i.e., the frac-
formed at room temperature. ture processes leading to failure are fully controlled
Lambrigger [2] has already shown that experimen-DY the toughening mechanisms responsible for stable
tal Weibull master curves of materials undergoing ancrack growth. Thus, the scaled failure stress distribu-
amount of stable crack growth prior to failure enabletions of such materials are independent of the initial
the characterization of the toughening mechanisms opflefect-size distributions [2, 3, 9]. The two areas formed
erating in the investigated materials. Furthermore, it ha§etween the step functia [e(z)] and M[e(2), m] are
been shown that an experimental Weibull master curvélénoted byFiM1[e(z)] and FiM2[e(2)]. In addition,
| exp(x, m) of 8 wt % Y-PSZ/20 vol %g-alumina com- | (X, m) is equivalent toM[e&(zin). m], wherebyz, is
posites can be constructed in the case of materials urgtefined by
dergoing stable crack growth prior to failure by simply
calculating the Weibull modulus from the upper fail- Zin = P(oin) = 1 — exp(l - m) @)
ure stress range of experimental, cumulative failure m
stress probability distributioR (o7 ) having been treated

extensively in part 1 of this series of papers [1]. In order o(Zn) = 0in )
to evaluate experimental failure data,(P (o)), a step o — o,
function H (x) equal to zero for scaled failure stresses &zn) = o —on X 4)

X < 1 and equal to one for> 1, as well as a quotient
characteristic for the investigated material, have beefrurthermoreK (y, m) is equivalent tavi[e(z), m] rep-
defined by Lambrigger [2]H (x) represents a material resenting the other special caseMfe(z), m], which
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fulfills the conditionFiM 1[e(2)] — FiM 2[e(z)] = O,
if ecr(2) is equal to onez is defined as follows:

T

1
E:G(Z):/o odP:af—f—OOF(l—f—%) (6)

o — o,

&2) = = =y (7)
o — Oy

FexpIM[e(z)] and Fexp2M[e(z)] represent the two

areas formed betweevl exple(z), m] and M[e(2), m],

wherebyMexple(z), m] is constructed by calculating

the Weibull modulugn from the uppew -range of ex-

The ym-values of the special master curve&, m)
and K(y, m), denoted byy, and xk, are obtained by
replacingz with z, or zin equations (8—14):

B { FiM1[e(zin)] } , { FexpIM[e(zin)] } (15)
=1 Fimze@n)] | | FexpM[e@n)]

_ { FiM 1{e(2)] } | { FexpIM[e(2)] } 16)
= Fim2le@] | | FexpMIe@)]

The quotientsyu, x1, and xx are material-specific in

a first approach, as has already been showryfory
Lambrigger [2]. However, all these quotients remain
m-dependent, thus complicating comparisons between
materials with highly different Weibull moduln. At

perimental, cumulative failure stress probability distri- l€ast calibration has been made easier because shapes

bution P(q7). The following equations result from the and positions of the are&exp1M andFexp2M, being
application of the evaluation method developed in ref-Separated by the cross-over point, are considered by

erence [2]:

€r (

2)
FiM1[e(2)] = /0 M[e(z), m] d[e(z)]

&r(2)
_ / [1-(1- 2"} dle(2)] (8)
0

FiM2[e(2)] = /OO {1— M[e(z), m]} d[e(2)]

e (2)

-/ T -2 de@]  (9)
& (2)
& (2)

FexpIM[e(2)] = /0 |Mexple(z), m]

_Mle@.mlidle@]  (10)
Fexp2M[e()] = f | IMie(@.m

e (2

~ Mexple(z). m]|d[e(z)]  (11)

BetweenFiM 1[e(2)] and FiM 2[e(z)] the following
relation is valid:

FiM1[e(2)] — FiM2[e(2)]
=ex(2) — /OOO exp{[In(1 — 2)][e(2)]™} d[e(2)]

(22

[-In(1 - 2)]n 42

= ecr(z) -

whereby Equations 8 and 9 as well as the following

identities are used:
(12" = exp{In[(1 - 2]}

= exp{[e(2)]"In(1 - 2)} (13)

integration up toe,(2) in all the relevant equations
(8-11). The latter is not the case for the quotignt
defined by Equation 1 and as suggested in an earlier

paper [2].

3. Significant deviation parameters derived

from apparent fracture toughness master

curves
The theoretical, apparent fracture toughness master
curvesL[d(2)] have already been discussed in detail in
part 1 [1]. However, an additional step function through
the inflexion point ofL[d(2)], which is equal to zero
forthe scaled failure stress intensit#g) < d.(z) and
equal to one fod(z) > d. (2), can be defined represent-
ing formally a material undergoing 0% unstable crack
extension. Furthermore, () represents the value of
the cross-over point formed tyd(z)] andLexp[d(2)].
Between this step function arldd(x)], two areas are
formed,C1,, below andC,., above the cross-over of the
two curves atl(z) = 1. The values o€, andCy, thus
correspond to 0% unstable crack extension. The values
of the areas formed betweer{d(z)] and Lexp[d(z)]
generally represent fracture events with a limited per-
centage of stable crack extension. They are denoted by
Clexp andC2exp, if two such areas are forméilexp
represents in these cases the area belowC2edp rep-
resents the area above the cross-akgiz) formed by
Lexp[d(2)] andL[d(2)]. C100, Clexp,Cox, andC2exp
are calculated as follows:

de (2)
Cro = /0 L[d(@)] d[d(2)]

= f:r(z) (1 - exp{[—In(@ - 2"

x [-In(1 — M[e@, ] 7 | ) dle@)] (17)

Cone = / T 1- Lid@) did@)]
der (2)

The specimen-size-independent, material-specific quo-

tient x is then given by

{ FiM1[e(2)] } _ { FexpIM[e(2)]
XM =

Fexp2M[e(2)]

FiM2[e(2)] ) } (14)

= /e:; (exp{[—ln(l — z)]mf4

x [-In(1 — M[e@. m]+ | ) dle(2)] (28)
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der (2) to describe the fracture behavior of brittle materials,
|C100 — Clexg = / Lexp[d(2)] d[d(2)] which undergo an amount of stable crack growth be-
0 fore failure occurs by unstable crack extension. If the
_ & 1 In(1 mg two-component model of Cook and Clarke is used to in-
- /0 ( N exp{[— n(l-2) terprete the areaslexp andC2exp, it can be observed
. that, within the framework of this approach, values,
x [~In(1 — Mexple(z), m])] = }) shapes, and positions GfLexp andC2exp are only de-
pendent on the toughening exponentescribing the
x de&(2)] (19) " ising R-curve behavior, and on the type, localization,
and number of residual stress fields existing in the inves-
o tigated specimens. Because the toughening expanent
|C20c — C2exp = / {1 — Lexp[d(2)]} d[d(2)] is generally valid in the whole specimen, itis a charac-
der (2) teristic value of the material. The localized component
oo - of the stress intensity factor is attributed to defects pro-
= / (exp{[—ln(l -2)] ducing the residual stress fields in the specimen. It is
€ (2) supposed that the residual stress fields mainly deter-
_ _ 4 mine the shape, value, and position relative tod{®-
x [=In(L — Mexple(z), m])] }> axis of C2exp (i.e., also thd (2)-value), the toughen-
x d[e(2)] (20) ing exponentg, however, predominantly the value of
Clexp. The type, degree of localization, and number
The corresponding expressions for the special mastéf residual stress fields in the material and, therefore,
curvesl (x, m) or K (y, m) are obtained, by replacing der(z) andC2exp, are thus believed to determine, in a
L[d(2)] throughN(a) = L[d(z,)] or T(b) = L[d(Z)], first approach, the toughening behavior of brittle ma-
as well asM[e(z), m] through| (x, m) = M[e(zin), m] terials with respect to the stable growth of microracks,
or K(y, m)=MJ[e(z), m] in Equations 17 and 18. if an external load is applied; for the growth of mi-
Moreover, the analogous replacements have to berocracks is controlled by microstructural features, and
carried out with the experimenta| master Curvesﬁna”y results in local stress release. The toughening
Lexp[d(z)] and Mexple(z), m] in Equations 19 and 20. €xponentz, on the other hand, is thought to determine
As in the case of Weibull master curves, a materialPredominantly the toughening behavior based on the
specific quotientyg can also be defined for appar- increased fracture resistance in the lowi¢z)-range
ent fracture toughness master curves in the followingf large cracks, mainly due to crack-tip shielding. The

manner: crack growth of large cracks is principally controlled
by the continuum properties of the material.
_ (Cax ). (Clexp (21) Because in quasi-static uniaxial bend tests, a com-
XB = Co /) \ C2exp pression region is formed in the tested specimens,

which is the sum of localized residual stress fields de-
The deviation parameters derived from apparent fracereasing the driving force for fraction, it is thought
ture toughness master curves@aréndependent, fascil-  that experimental, apparent fracture toughness master
itating direct comparisons of completely different typescurvesL exp[d(z)], obtained from quasi-static uniaxial
of materials. They can be interpreted with the help ofpend tests, might slightly differ from those of uniax-
the two component models of Cook and Clarke [3].ial tensile tests, if very large stable crack growth of
This interpretation is also possible for the deviationrelatively small cracks takes place prior to failure. In
parameters derived from Weibull master curves, howuniaxial tensile tests, no additional residual stress fields
ever, calibration problems can arise. of this type, decreasing the driving force for fraction,

are created. Therefore, tli&lexp- and specially the

C2exp-values obtained from uniaxial bend tests might
4. Model of Cook and Clarke , be overestimated in these cases. The valuealefp
The area€ 1exp andC2exp can be interpreted with the andC2exp might also turn out to be slightly specimen-
help of the two-component model described by Cooksjze-dependent in uniaxial tensile tests if the residual
and Clarke [3]. Cook and Clarke modelled the driv-sresses built up in the tested specimens are both ex-
ing force for fracture as the sum of two componentsremely high and clearly not proportional to the applied
one stabilizing and the other destabilizing crack Prop-stress, because in these cases, the Weibull modhilsis

agation, leading to a crack extension force displayinghot necessarily specimen-size-independent, according
a minimum as a function of crack length. The resis-io \Weijpull [4, 5].

tance to crack extension, the R-curve, is described in

this two-component model by an increasing power law

R o ¢ (c being the crack lengtiR the fracture resis- 5. Experimental data of three-point

tance, andr the toughening exponent, characterizing bend tests

the rate of toughness increase) overlapped by an addi-he experimental Weibull master curvKexp(y,
tional, localized loading, decreasing the driving forcem = 7.9) and the corresponding experimental, apparent
for fracture with increasing crack length. The localizedfracture toughness master curexp@) of 12 mol %
loading is modelled by a residual stress intensity factorceria partially stabilized tetragonal zirconia polycrys-
Using equilibrium fracture criteria, it is thus possible tals (Ce-TZP) are displayed in Figs 1 and 2. These
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K(y,m=7.9) K(y,m=7.0)
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Figure 1 Dashed line: Experimental, alternative Weibull master curve gigyre 3 Dashed line: Experimental, alternative Weibull master curve
Kexp(y, m=7.9) of Ce-TZP cal(‘:ulsf\ted from three-point bend tests of k exp, m=7.0) of Y-PSZ-alumina composite calculated from three-
Ready and McCallen [6]. Full line: Alternative Weibull master curve pqint pend tests of Troczynski and Nicholson [7]. Full line: Alternative

K(y,m=7.9). Weibull master curveK (y, m=7.0).

T(b) T(b)

1r 1
0.8+ 0.8

0
0
0.6 0.6 ég@
0.4} 0.4
O
0.2} OO 0.2 5
O o}
b b
0.5 1 15 2 0.5 1 1.5 2

Figure 2 Dashed line: Experimental, alternative apparent fractureFigure 4 Dashed line: Experimental, alternative apparent fracture
toughness master curvelexpp) of Ce-TZP calculated from  toughness master curvieexp®) of Y-PSZ/8-alumina composite cal-
Kexp(y, m=7.9). Fullline: Alternative master curve for brittle cleavage culated fromK exp(y, m=7.0). Full line: Alternative master curve for
fracture toughness testifig(b). brittle cleavage fracture toughness testing)T (

master curves have been derived from quasi-statifor Y-PSZ/8-alumina compositen ~ 7.0, yr ~ 0.83,
three-point bend tests of Ready and McCallen [6]b ~ 0.82, xx ~ 0.40, xg ~ 0.24, (xx/xB) ~
performed at room temperature. The master curved.67, FiM1[e(z)] ~ 0.017, FiM2[e(z)] ~ 0.187,
K(y, m) and T (b) are most convenient for describing FexpIM[e(z)] ~ 0.014, Fexp2M [e(Z)] ~ 0.062,
quasi-static, mechanical tests characterized by uniax;,, ~ 0.0461,C,. ~ 0.2260, Clexp/ Cix) ~ 82%
ial stress distributions because the mean, represenénd C2exp/Cox) ~ 19%. It is obvious, that the
ing the physically highly significant first moment, is Weibull modulim of Ce-TZP and Y-PSZ-alumina
used as scaling factor and, moreov€rly, m) exists  differ only slightly. However, the shapes and positions
for every relevant Weibull modulum > 0. The fol-  of the deviation areaEexpIM[e(Z)], Fexp2M[e(2)],
lowing characteristic deviation parameters have beelexp andC2exp are completely different. The latter
evaluated for Ce-TZRn~ 7.9,y ~ 1.03,b;; ~#1.03, leads to quite different cross-over valugs andby,,

Xk~ 0.22, x5 ~0.18, (x/x8) ~ 1.26, FiM 1[e(2)] ~
0.075, FiM2[e(2)] ~0.098, FexplM[e(z)] ~0.062,
Fexp2M[e(Z)] ~ 0.018, Ci, ~ 0.1285,Cye ~
0.0985, Clexp/Cixn)~69%, and C2exp/ Cox)~
12%.

The experimental Weibull master curdeexp(y,

characterizing in a first approach shapes and positions
of the deviation areas. Furthermore, thg/xg)-values

of the two materials are close to one another. Therefore,
because(g is anm-independent magnitude, it can be
concluded also that deviation parameters of Weibull
master curves of different types of materials might be

m = 7.0) and the experimental, apparent fracture tougheompared to one another, as long as the values of the
ness master curvéexp@) of 8 wt% yttria partially ~ Weibull modulim do not differ significantly. Further,

stabilized zirconia/20 vol 98-alumina composite (Y-

the deviation areas have to be defined in the suggested

PSzg-alumina composite) are displayed in Figs 3 andway by taking account of the cross-over values in the
4. These master curves have been derived from quadierm of integration limits.

static three-point bend tests performed at room temper- The experimental Weibull master curi€exp(y,
ature by Troczynski and Nicholson [7]. The following m=25) andT exp({) of a coarse-grained-silicon ni-
characteristic deviation parameters have been evaluateédde are displayed in Figs 5 and 6. These master curves
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K(y,m=25) The following characteristic deviation parameters have
thus been evaluated for coarse-graingegilicon ni-

! tride: m ~ 250, Vo ~ 098, b, ~ 0.98, x« ~

0.32, xg ~ 0.08, (xx/x8) ~ 3.8, FiM1[e(Z)] ~

08 0.012, FiM2[e(Z)] &~ 0.032, FexpIM[e(Z)] ~ 0.005,

o6 Fexp2M[e(z)] ~ 0.004, Ci, ~ 0.1036,Cye =~
0.5 1 1.5

0.1236, Clexp/Cix) ~ 24%, and C2expy/ Coy) =~
2%. Although shapes and positions of the areas de-
scribed by the deviation magnitudésexpIM[e(z)],
Fexp2M[e(2)], Clexp,C2exp, Yo andbe are quite
similar to the ones evaluated for Ce-TZP, a clearly dif-
fernt quotient §«/xgs) has been discovered for the two
, 7 materials. Thereforexk/xs) is a considerably vary-
ing function with respect to the Weibull modulus.
Egire 55352*‘56)“o'if”;aEéF;e”r”;ien”et;"sﬁi'ieof:ar::‘t’r?d‘é"ii;‘é” Ir;iztef: OC::VE Consequently, if it is intended to compare directly the
thfeg—?)lé)int bend tests of H?rosaki and Akimune [8]. FllJJII line: Alter- dGYIatIOD magnitudes OT Weibull master curv_es O.f ma-
native Weibull master curvi (y, m=25). terials with completely differern-values, a calibration
function %(m) has to be available.

04

0.2

T(b)

1

08 6. Discussion
In agreement with the model of Cook and Clarke [3], a

06 high (Clexp/ Ci.)-value can be explained as an effi-
cient shielding of the crack-tips of large cracks. This is

0.4 clearly the case for Ce-TZP and Y-P@ZAlumina com-
posite. On the other side, a higBZexpy/ Co)-value

02 combined withd () ~ 1 indicates a huge amount of
simultaneous, stable growth of microcracks as well

b as a narrow initial defect-size distribution. If the ini-
0.5 1 1.5 2

tial defect-size distribution had not been narrdy(z)

Figure 6 Dashed line: Experimental, alternative apparent fract reWOUId have been decreased clearly below 1 by the grow-
igu ine: Experi , v ure. . . . LS
toughness master curifeexpp) of coarse-graineg-silicon nitride cal- ing defects belonging to the large-size tail of the initial

culated fromK exp(y, m=25). Full line: Alternative master curve for qefeCt'Size Q?StribUtion- EOI’ Ce-TZP, all of the men-
brittle cleavage fracture toughness testii). tioned conditions are fulfilled, whereas f@rsilicon
nitride only a narrow initial defect-size distribution as

are again derived from quasi-static three-point bendvell as a moderate shielding of large cracks might be
tests being performed at room-temperature by Hirosak§upposed. Furthermore, the initial defects represent the
and Akimune [8]. It can be seen from Fig. 6 tiztexp ~ Potential starting points for microcracking (i.e., the nu-
cannot be evaluated graphically frofexp@) for ~ cleation sites of the microcracks). _ _
statistical reasons. According to Equation 24 of part In the case of Y-PS#-alumina composite, quite

1 [1], it can be seen that the high value of the Weibullhigh (Clexpy Cix)- and C2exp/ Ca)-values have
modulusm reducesTeprg) to a very narrowb-range been evaluated indicating efficient shleldlng of crack-
close to 1 for measurements based on about twentjps of large cracks as well as intense stable microc-
tested specimens. NevertheleBexp(y, m=25) fa-  racking. Howeverd(2) is clearly smaller than 1, thus
cilitates an acceptable fit down yo= 0. Thus, at least giving rise to the assumption of a wide initial defect-
FexpIM[e(Z)] can be evaluated directly. Morevoer, Size distribution as well as simultaneous, intense stable

Clexp can be obtained analytically by simply usinggrowth of microcracks of awide size-range prior to fail-
Equation 19 in the special casebéxp(y, m). ure. This situation can characteristically be expected, if

debonding occurs along inhomogenities, such as grain-
boundaries and internal interfaces, and is characterized
by local, detrimental defect-size distributions as well as
Yor 1\ high, local concentrations of defects. For example, in
— / (1 _ exp{—l“(l + _) the case of the Y-PSZfalumina composite, significant
0 4 debonding along the interfaces of the two phases has
m been claimed [9].
% {—F(l n i) Itis assumed that the positions©@iexp andC2exp
m relative to thed(z)-axis, as well as the values and
shapes of these two areas, might provide additional in-
m formation about the toughening mechanisms operating
xIn[1 — Kexp(y, m)]} }) dy  in macroscopically homogeneous materials undergo-
ing stable crack growth, if experimental data of mate-
(22) rials of known toughening mechanisms are available

bcr
|C100 — Clexd = / Texpb)db
0

4
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